(Conditional Distribution XIZH<— Joint Distribution of X and ZH<— Marginal Distribution)—

7

o EFHEREE X (Factor Model Definition): BEEXH X = p+ Lz + €. ERBNWFE
ZicHh, ATELES, BRig9EL =0,

o X: MMZEE (Observed variables), #EHRp X 1,
o L: B F&f4ERE (Factor Loading Matrix), #ERp X 7,
o z: B#EHREF (Latent Factors), #EH r x 1,

o € RETMFHEF (Error terms [ Specific factors), #ER p X 1,

Independence

>
Negentropy
IQ “‘
4 \ ”0‘
1. Covariance: Cov(X,Y) = E[XY] — E[X|E[Y]. .,
2. Uncorrelated: Variables X, Y are uncorrelated if Cov(X,Y) = 0. ..
3. Independence: Variables X, Y are independent if and only if their joint probability "g
mass function (PMF) factorizes: fx v (z,y) = fx(z)fy(y) forall z,y. ..
Independence Related
4. Implication: Independence —> Uncorrelatedness, but Uncorrelatedness +> S,
Independence. hAEEN .. e,
covariance, uncorrelated criteria, independence and
uncorrelated does not implies to independence.
\ J RRE T
Factor Model Distribution - Note9 Ql
‘Q

(Assumptions: followed by the MVN assumptions.

)_

RXENRIgEINER FOMTHRIR:

1. EFS: 2 ~ N,(0,1,) (REESHT, FMEXABMSE),
21828 e ~ N,(0, 1) (9ER0, HEER ),
3. M 2 5 € M,

Factor Analysis Model Assumptions

X=Lz+e

S

Model Definitions [«

ARZE:

C. FA via PCA (Em o EGiTEF)

XEMBNXERIE, HHIUER PCA FHiERM FA R, HIMNBEIH—EEBEMUELN XK
{EFR4ERE, IRIBIEDMBEIR (Spectral Decomposition), thAZEMHEMTINER:

p
Y= E /\iUiUzT
i=1

HA (i, v;) BSEETSTEE,

7£ FAvia PCA 1, FHATEEE r M RAKISEEREN MM ERMGE L, BANMEE

¢ = \/;J‘Uj

Using PCA in FA

ILIF =) L} = te(LLT)
i

Varimax Criterion

Frobenius Norm

THNPRHIEIIE, BIRHAFTEEKRN
Orthogonal Q, FRIAFTEZE N LRI,

7

YR@LMY, ARERER—AREA.
%10) . REKEZEENVNAETEHALRFRE.

+ ¥,

\

o HRIRZIS AR (Model Identification): ERFER ¥ = LLT + U &, mMBLEE 3

o JERfETTE (Off-diagonal elements): (X i LLT e (Bx U 23 MmER, FEdf

o 3T (Diagonal elements): i LLT 1 U #@E#RE, Var(X;) =Y ka

r
Identifiability
Factor model is not identifiable
X=LZ+¢

= LQQ"Z +¢

= (LQ)Q"2) +¢
=L"Z"+¢

so we need additional constraint.
Diagonalization: find @ such that LTv1Lis diagonal

ITvL=A

Let Q be orthogonal (QQT = 1)

Var(Z*) = QTVar(2)Q = QTIQ =1 !

(Diagonal Matrix)

—| Model Identification '

Our MLE model is X =~ LZ + ¢ where Z ~ N,(0,I),& ~ N,(0, ¥)

given 1 ..., € RP find 21 ... z, € R” that follow the model.

« We can use weighted regression (Bartlett)

% = argmin (z — Lz)T¥ (2 — Lz)
z

%(..4) =—2LT0 Y (z—L2) =0

Lo L= [TO g
= 5= (LTe D) 1LTY g
« Comment: if we fit FA via PCA we can use unweighted regression (U = I)
2 = argmin ||z — Lz||?
z

= 3= (LTL) L7z

Central Limit Theorem

(Optimization Goal

(SVD? Others li

T
L]
.
L
.
L]
L}
L
Ll
L}
L
Ll
L
L
L
L
.
e i L L LT
2 Xuiuiuiuieiei e T DY
g ammm==" Seeaa.
. T e R
: .—-"'-- ...i
" -__.-"' ~... icrs&(tizpa?es;c.
=" ..
Non-Gaussian Assumption R
-
-
.
. Chd A .
" H *
f s
A
' [}
. [}
. [
. .
. .
.
L ] : ‘,
. ' .
] " o'
' . ’x 1. ft4=2 Moment (5)?
'.l - N K ’,o' {f:a’l’j(standardized Moment), SIF—EHERy (198
L] 3 (Y BH 2: o o
I- 1. Kurtosis (x): A measure of the “tailedness” of the probability distribution. For a : ’o' T -
9 4 *
l.l variable y, £(y) = E [(%) ] -3 ! e
*
N 2. Excess Kurtosis (Alternative Definition): Often denoted simply as the fourth N hd
. o
'l standardized moment minus 3. For a zero-mean variable §: £(§) = % —3.
'. 3. Properties of Moments: For independent zero-mean variables y1, ya: KurtOSIS 4th Moment ---------------------------- > Moment « —BE (k = 1, Mean
. o
l‘ o Ely1ys] = E[y1]E[ys] =0 a (Centering) 1, EATERH
i - Elyiys] = EWJEly:] = 0 ° SR (k=2 Varioncel: 7.
. (Whitening) 1, {74
H ° Elyty}] = BlyilBly3] = olo} R
H \ J ”
*
. *
: .
. '0
L] '0
' *
] *
n 4
1} "
. *
. *
[ 0‘
. *
1 ] *
) "
L ] 4
] *
0 o
H o 1. Permutation Matrix (P): A square binary matrix that has exactly one entry of 1in each ( ) )
' row and each column and Os elsewhere. The ICA model X =Lz holds even if we permute the order of the sources z
. * . . . . .
H 2. Inverse of Permutation Matrix: For any permutation matrix P, PT — P—1. Fora and the corresponding columns of L. This proves the permutation ambiguity
. . - .
K H /' simple transposition (swapping two elements), PT = P, thus P2 = [ and P = P~L. in ICA.
\J
: . . 3.Lin ion:
‘. . . . Linear Transformation:
P \ * —_ -_—
. : © Pre-multpication (PA): Pemtes therows of A MPAERIRE— 2N, BLABERSERIN,
. . *
. H .0' o Post-multiplication (A P): Permutes the columns of A. . J
K H K
. *
. H R R 4
[y . Re R4
[y ' o o?
[y . o4 .
. . o o’
. (] * .’
“ ll o .
. ' . R
. . ’0 R
*
“ ] ’0 .
. . * .
. H o Re
[y 'l . o’
\J * s
. ' L4 .
. L * *
. * ’O
“ . e o*
. L] * .
Y ] * .
* *
. . * é'
. 1 '0 S
. ' R .
. * *
. s . o
\J . 00 P
“ [ - R
. . o R4
. . * Pad
. . * -
. ' . Py
. . '0
A . * 'O
. H o o’
. ] o' o
A ) . * 4
*e ° [ R4 "v
’s~ . H ‘o‘ ’o' o - - -
e * H o . #—%: EX PVE (Proportion of Variance Explained)
"~, K H L ZEAXBE:
- Y | ] * . 0
‘ : . Permutation Matrix 12
. PVE; = ——
H Laen =W tr(%)
) am=="
' JPPET L . 58 t(5) REAE,
' JUUTTL - 870?28 I ETRBNSE,
. - - -
[ PP

MEFHIRETMHO) . XPOTEEMNT (IRENEEE) B:

tr(¢;6]) = tr(€7;) = &4, = |4

o BHLE ]2 NEBRNREE j MNETF 2; BHHEEBOTR, ©

Total Variance Via Trace Calculation

240 (BigE

ke M204(b)?HFirst Canonical Correlation calculation

EMiLE EMVSE

ChiSquareZE Z L ERITEIR T EAHIXHEF
E%, ®BEHEHEMT/F Testing,

HTesting&B, TMYXEFE

Multivariate Testing

Factor Analysis and ICA (after midterm 2)

3. $ERERS (Matrix Calculus): SFEE 3, Z/RE B AB 3¢ B HISHR 246 (X A 3IFRAT),

HHMb' B 31 B HSHA b,

x
x
¥
x
¥
"
[
¥
¥
]
]
]
u
u
u

| 4

Residuals

4 N

1. RIS EERE X

2. BERmLENBE—C:

C(Cxz) = C(\z) = C%*x = A\(Cxz)
3. ERC?=C, BCxz =z, RABE:
Cz = MAz) = Az = Nz
=N -Nz=0
F-A=0=2A-1)=0
Idempotent's eigenvalue is either 1 or 0.
. J

(ordinary least square estimates)—

PVEi: Proportion Variance Explained by ith PC:
(Variance Explained by that PC) / (Total Variance)

Linear Regression

»
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Matrix Calculus [@-==-==mmmsmmmsmmmsmonssmnsoness
Seel .. v
~ o \J
Sy, .
Sy, .
Say .
. .
Ses ~ ‘t
Projection Matrix is idempotent and symmetric, A
therefore positive semi-definite S
Idempotent . -
- - " Il :
Proof: Midterm 1 Ql(a) ;
_,-"“‘ /' :' .
e * ]
PP e . /’ ':' H
=" Q U "
PR e 4 . "
R K '
. . ‘ ’ H
— Projection Matrix ; .
4 ™ * g .
Orthogonal projection |edit] o" " :
For example, the function which maps the point (z, y, z) in three-dimensional space R? to the point (z, y, 0) is an o " :
orthogonal projection onto the xy-plane. This function is represented by the matrix 'o‘ ,' L]
100 o . '
P= [0 1 o} . R . H
000 o N N
4
The action of this matrix on an arbitrary vector is " l' :
g v '
z z |/ R N :
Plyl =1yl K K !
z 0 0' ', :
To see that P is indeed a projection, i.e., P = P2, we compute .". "' .:
T T T T 4 ’ ]
g IR AR ;
* ¥ [
Observing that PT = P shows that the projection is an orthogonal projection. ’0' "' :
\. J A . M
L4 .
4 . "
0' '. :
"' : :
R . N
K . H
4 ] L]
g : :
. : :
o " l.
K . .
'0 " :
0” " :
L4 ’ "
R4 . '
RS N l.
," . H
B J ‘
’0‘ . :
Q ’ :
R4 " ]
0‘ " 4
0" " . -
s N Diagonal of Matrix
L4 .
0' "
0" " ..
" " '
4 . L]
R N H
0'. " l.
* ’ "
4 . ¥
B N ]
0. U :
4 . L]
. ; :
Re ’ "
Q - ]
* ’ "
'.' . 4
’0
t'" . Square Matrix: the trace of square matrix is
. . the sum of all eigenvalues
How many times this eigenvalue has Multiplicity of an Eigenvalue R
appeared in the matrix plicity 9
"
.
"
U
"
U
.
'l
.
"
-
U
"

Trace and Total Variance

scatterplot?
Find PCI, PC2, etc. projection?
4
; regular way: ED and lagrange?)
Canonical Correlation Analysis (CCA) :
» ;
[ : Variance Explained By PC —(Projection, which is dot product in math)
R : ~
\ Kernal PCA [*

2. MVN I MZTHRIER (Linear Transformation Property): & y ~ N, (u, X)
p X n EHIER, WEMAS z = Ay BRM:

z ~ Ny(Ap, A AT

. N 1 -
fy) = @2m) 2|8 2 exp (*i(y*/t) b ‘(yﬂt))

, BAR—

Linear Kernal PCA is Standard PCA (we can use SVD to proof)

Definition
4
. s N
'.' o £MHESSH LR (Conditional Normal Distribution Formula): X2 ZiEBE—H#S
. X
K Rt MRHEEHT (z) BASTESH:
. X 1x Yxx Xxa
Joint Distribution ; 2) "N () sy =
] Conditional Distribution
< BAREDT X|2z IRMESHH, EHETNSEERS RN
,” E[X|Z] =px + EXZE;;(Z - lu’Z)
Var(X|z) = Bxx — Zx.2 1 %.x
o" \, J
Marginal Distribution

Random Variables

Linear Transformation of Multivariate Normal

BOFHRR: BTTIESS R IEER

z ~ Np(Ap +b,

XEBAXETBEAAN, BESNICE:

BIEE—THIEE y ~ Mo (1, D), MRBENEBNEM—TEUTHR 2z = Ay +b (Hh ARE

HERE, b RERMEE), B2z WDHRM:

o 19{& (Mean): E[Ay + b] = AE[y] +b=Ap+b
« 75 (Variance): Var(Ay + b) = AVar(y)AT = ATAT (IERBR=EEAFR)

AT AT)

@ = = = = = m e M e M= e e e == e e e == e e e e == e e e e R == e e e R M == e e R R m = = e e R R = === e R R M == = e m = R = === e R R == === R M === e R MM EEEEEEEEEEEEEEEEEEEAEEssEssssEEsEmsss=nan

Column Space of X - C(x)

¥

o ZTIESSHHIMYR (Properties of Multivariate Normal Distribution):

o BTk (Linear Transformation): IR z Ml e RIES D%, BATCIINEMAS X 1B
RESHH.

o B3I {ERig (Independence Assumption): ZEF o, BERIZEERT z 51RE
I e HEMII, B e WPEZEBEEIMT (B UV EXAER) .

Properties of MVN

Column Centered / Column Orthogonal

EZaLih, BEN BERBEEX NS EEN X 0 (Trace),
P P
Total Variance = tr(X) = Z O = Z A
k=1 =1

(F: BWHEEFNDSTRMBENBLETEZH, BFFRABHIEZ. )
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.
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Gram Matrix: PSD —(details see M2Q3 explainations)
X g
| SVD can be applied to any matrix, any type
y and any kind.
.
SVD p
‘,N While in comparison, ED can only be applied
to square matrix.
'ﬂ‘ .
‘,"“ 1. M5 E X (The Anatomy)
el R — R
Le*” 5506 X MMEDERE n X p (& n X
"‘." EMEERAT:

.

HERT

_ _ Design Matrix
Linear Regression = \

BE n MNEAE (observations), S MMEARE p MFE (features) . 1%t

o 81T (Row): KER—#Z (Sample / Observation)., 4, i TR i TAKMER

o §—5l (Column): f$3R—"4FE (Feature / Predictor), fll, 2 j FIKKRFABAN GE".

FE—MTENEER)IRE y = X[ + € 2

(p+1), MEBSHER) .

Zn2

1951, X2H 75| NEEE (Intercept / Bias
B HhEg By 183k, MmERERREEHI,

MLE

k-(Least Sq uares)

\{ Distribution of Beta

Positive Semidefinite PSD

Outer Product

nx15EFEFInX1¥EfERJouter product, ErankKina R

B

S
—h

THEEFI RMidterm! Q2ﬁ$7fﬁl7\])

nxn matrix could span full space if all column

space.

Orthogonal Complement (Orthogonal Complement Def: Midterm 1 Ql(b)

vectors are linearly independent; while nxm
matrix is called full column rank but not full

\{Projection Complement: Q = | - P, see midterm 1 ql(b) )

m

=il

D ai;=0 ®EMEREE 17¢;=0

Column Centered
\

Teoly
_

Column Orthonormal (FREEXR): FAYEEEH, MASJINKE () BLA

mn Orthogonal

~o

SR IE3ZAERF (Orthogonal Matrix),

T
e

— Column  prifwgonal =>

Sample Mean / Sample Variance Matrix for
Column Centered Data Matrix

Var(AY) = AVar(y)A”~transpose, also linearity

i ? . .
variances is maintaned
Mean?Halso linearity is maintaned)

| |1 -3 -
2. [8] Let X = (q a /l) =( 7
and columns correspond to variables. Assume that X is column-centered (each column has mean 0) and
column-orthogonal (XTX =1).

10x3 . .
€ R, be a data matrix where rows correspond to observations
=Ty ~

(a) [2] Find the sample mean vector Z and the sample covariance matrix S of X.

column ceateredd = [, =fp = =0 = x= ég)

XTx
g: _— 4I3>‘= (4/1044, )
Yio

_ 1

X n - /0
meanf 2ENHER0EE, nxl; varianceFl@nxnfIxIH
ZIEfE, FES— 1 TEHE/n, XELRAN-1EHsample
varfy o,

4. WA MATTR (LLAMIT x MW25)

BRY' MBEUTRRY 1938251,

Result;» = (100f1,1 x 1f21) + (1002 X
RER%H 100 x 1 = 100

— 10

=100x0=0

3t AmLLTE, HFcolumn orthogonal I4&EY,

ZHZMO




