Note 9
Explain why factor model is equivalent to
$$z \sim \mathcal{N}(0, I)$$$$x|z \sim \mathcal{N}(Lz, \Psi)$$Show that PVE by $j$-th factor in FA via PCA is $\frac{\lambda_j}{\text{tr}(\Sigma)}$ where $\lambda_j$ is $j$-th eval of $\Sigma$.
Is $PVE = \frac{\|L\|_F^2}{\text{tr}(\Sigma)}$ rotation invariant? I.e. will you get the same value of PVE if use $\tilde{L} = LQ$ instead? Are $PVE_j = \frac{\sum_{i=1}^p \ell_{ij}^2}{\text{tr}(\Sigma)}$ rotation invariant?
FA Solution is not guaranteed to exist. Consider:
We want to use $r=1$, i.e. find $L = \begin{pmatrix} \ell_{11} \\ \ell_{21} \\ \ell_{31} \end{pmatrix} \in \mathbb{R}^{3 \times 1}$ and $\Psi = \text{diag}(\psi_1, \psi_2, \psi_3)$ Such that $\Sigma = LL^T + \Psi$.
- Show that $\ell_{11}\ell_{21} = 0.9$, $\ell_{21}\ell_{31} = 0.4$, $\ell_{11}\ell_{31} = 0.7$
- Find value of $\ell_{11}$
- Show that $\ell_{11} = \text{Cor}(x_1, z_1)$ and explain why there is no solution to $\Sigma = LL^T + \Psi$
- Find value of $\psi_1$
- Show that it’s not possible for $\psi_1 = \text{var}(\epsilon_1)$
Finding scores via conditional distribution. Consider $y = \begin{pmatrix} x \\ z \end{pmatrix}$
- Find joint distribution for $y$
- Find conditional distribution $z|x$
- Argue how to use formula for $E(z|x)$ to find scores $z_1 \dots z_n$
- Why $E(z|x)$ is a good estimate?
Note 10
Assume that $P \in \mathbb{R}^{p \times p}$ is a permutation matrix that permutes $i$-th and $j$-th elements in $\mathbb{R}^p$, i.e.
If $x = \begin{pmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_j \\ \vdots \\ x_p \end{pmatrix}$ then $Px = \begin{pmatrix} x_1 \\ \vdots \\ x_j \\ \vdots \\ x_i \\ \vdots \\ x_p \end{pmatrix}$
Write down $P$ explicitly
Write down $P^{-1}$ explicitly
(Hint: note that $P^{-1}(Px) = P^{-1} \begin{pmatrix} x_1 \\ \vdots \\ x_j \\ \vdots \\ x_p \end{pmatrix} = x = \begin{pmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_p \end{pmatrix}$)
If $z = \begin{pmatrix} z_1 \\ \vdots \\ z_p \end{pmatrix}$ and $L = (\ell_1 \dots \ell_p)$ write $\tilde{z} = Pz$ and $\tilde{L} = L P^{-1}$ in terms of $L$ and $z$
Using equation $Lz = \ell_1 z_1 + \dots + \ell_p z_p$ show that $\tilde{L}\tilde{z} = Lz$
Uncorrelated $\nRightarrow$ independent Consider random vector $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ with joint distribution
$$x = \begin{cases} (0, 1) \\ (0, -1) \\ (1, 0) \\ (-1, 0) \end{cases} \text{ with probability } 1/4$$- Show that $\text{cor}(x_1, x_2) = 0$
- Find marginal distributions $f_{x_1}(x_1), f_{x_2}(x_2)$
- Show that $x_1$ and $x_2$ are not independent i.e. $f_x(x_1, x_2) = f_{x_1}(x_1) \cdot f_{x_2}(x_2)$
If $y_1 \sim (\mu_1, \sigma_1^2)$ and $y_2 \sim (\mu_2, \sigma_2^2)$ derive that
$$\mathcal{K}(y_1 + y_2) = \frac{\sigma_1^4 \mathcal{K}(y_1) + \sigma_2^4 \mathcal{K}(y_2)}{(\sigma_1^2 + \sigma_2^2)^2}$$